VectorDB
The main database class for managing vector collections.
simplevecdb.core.VectorDB
Dead-simple local vector database powered by usearch HNSW.
SQLite stores metadata and text; usearch stores vectors in separate .usearch files per collection. Provides Chroma-like API with built-in quantization for storage efficiency.
Storage layout: - {path} - SQLite database (metadata, text, FTS) - {path}.{collection}.usearch - usearch HNSW index per collection
Encryption (optional): - SQLite encrypted via SQLCipher (transparent page-level AES-256) - Index files encrypted via AES-256-GCM (at-rest only, zero runtime overhead)
Source code in src/simplevecdb/core.py
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 | |
collection(name='default', distance_strategy=None, quantization=None)
Get or create a named collection.
Collections provide isolated namespaces within a single database. Each collection has its own usearch index file.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Collection name (alphanumeric + underscore only). |
'default'
|
distance_strategy
|
DistanceStrategy | None
|
Override database-level distance metric. |
None
|
quantization
|
Quantization | None
|
Override database-level quantization. |
None
|
Returns:
| Type | Description |
|---|---|
VectorCollection
|
VectorCollection instance. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If collection name contains invalid characters. |
Source code in src/simplevecdb/core.py
list_collections()
Return names of all initialized collections.
Only returns collections that have been accessed via collection() in this
session. Does not scan the database for collections created in previous sessions.
Returns:
| Type | Description |
|---|---|
list[str]
|
List of collection names currently cached in this VectorDB instance. |
Example
db = VectorDB("app.db") db.collection("users") db.collection("products") db.list_collections() ['users', 'products']
Source code in src/simplevecdb/core.py
search_collections(query, collections=None, k=10, filter=None, *, normalize_scores=True, parallel=True)
Search across multiple collections with merged, ranked results.
Performs similarity search on each collection and merges results using score normalization for fair comparison across distance metrics.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
Sequence[float]
|
Query vector (must match dimension of all searched collections). |
required |
collections
|
list[str] | None
|
List of collection names to search. None searches all initialized collections (from list_collections()). |
None
|
k
|
int
|
Number of top results to return after merging. |
10
|
filter
|
dict[str, Any] | None
|
Optional metadata filter applied to all collections. |
None
|
normalize_scores
|
bool
|
If True, convert distances to similarity scores
in [0, 1] range using |
True
|
parallel
|
bool
|
If True, search collections concurrently using ThreadPoolExecutor. |
True
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, float, str]]
|
List of (Document, similarity_score, collection_name) tuples, |
list[tuple[Document, float, str]]
|
sorted by descending similarity score (highest first). |
Raises:
| Type | Description |
|---|---|
ValueError
|
If no collections specified and none initialized, or if collections have mismatched dimensions. |
KeyError
|
If a specified collection name doesn't exist. |
Example
db = VectorDB("app.db") db.collection("users").add_texts(["alice"], embeddings=[[0.1]384]) db.collection("products").add_texts(["widget"], embeddings=[[0.2]384]) results = db.search_collections([0.15]*384, k=2) for doc, score, coll in results: ... print(f"{coll}: {doc.page_content} ({score:.3f})")
Source code in src/simplevecdb/core.py
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 | |
vacuum(checkpoint_wal=True)
Reclaim disk space by rebuilding the SQLite database file.
Note: This only affects SQLite metadata storage. Usearch indexes don't support in-place compaction; use rebuild_index() for that.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
checkpoint_wal
|
bool
|
If True (default), also truncate the WAL file. |
True
|
Source code in src/simplevecdb/core.py
close()
check_migration(path)
staticmethod
Check if a database needs migration from sqlite-vec (dry-run).
Use this before opening a v1.x database to understand what will be migrated. Does not modify the database.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
str | Path
|
Path to the SQLite database file |
required |
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dict with migration info: |
dict[str, Any]
|
|
dict[str, Any]
|
|
dict[str, Any]
|
|
dict[str, Any]
|
|
dict[str, Any]
|
|
Example
info = VectorDB.check_migration("mydb.db") if info["needs_migration"]: ... print(f"Will migrate {info['total_vectors']} vectors") ... print(info["rollback_notes"])
Source code in src/simplevecdb/core.py
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 | |
VectorCollection
A named collection of vectors within a database.
simplevecdb.core.VectorCollection
Represents a single vector collection within the database.
Handles vector storage via usearch HNSW index and metadata via SQLite. Uses a facade pattern to delegate operations to specialized engine components (catalog, search, usearch_index).
Note
Collections are created via VectorDB.collection(). Do not instantiate directly.
Source code in src/simplevecdb/core.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 | |
add_texts(texts, metadatas=None, embeddings=None, ids=None, *, parent_ids=None, threads=0)
Add texts with optional embeddings and metadata to the collection.
Automatically infers vector dimension from first batch. Supports upsert (update on conflict) when providing existing IDs. For COSINE distance, vectors are L2-normalized automatically by usearch.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
texts
|
Sequence[str]
|
Document text content to store. |
required |
metadatas
|
Sequence[dict] | None
|
Optional metadata dicts (one per text). |
None
|
embeddings
|
Sequence[Sequence[float]] | None
|
Optional pre-computed embeddings (one per text). If None, attempts to use local embedding model. |
None
|
ids
|
Sequence[int | None] | None
|
Optional document IDs for upsert behavior. |
None
|
parent_ids
|
Sequence[int | None] | None
|
Optional parent document IDs for hierarchical relationships. |
None
|
threads
|
int
|
Number of threads for parallel insertion (0=auto). |
0
|
Returns:
| Type | Description |
|---|---|
list[int]
|
List of inserted/updated document IDs. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If embedding dimensions don't match, or if no embeddings provided and local embedder not available. |
Source code in src/simplevecdb/core.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | |
add_texts_streaming(items, *, batch_size=None, threads=0, on_progress=None)
Stream documents into the collection with controlled memory usage.
Processes documents in batches from any iterable (generator, file reader, API paginator, etc.) without loading all data into memory. Yields progress after each batch for monitoring large ingestions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
items
|
Iterable[tuple[str, dict | None, Sequence[float] | None]]
|
Iterable of (text, metadata, embedding) tuples. - text: Document content (required) - metadata: Optional dict, use None for empty - embedding: Optional pre-computed vector, use None to auto-embed |
required |
batch_size
|
int | None
|
Documents per batch (default: config.EMBEDDING_BATCH_SIZE). |
None
|
threads
|
int
|
Threads for parallel insertion (0=auto). |
0
|
on_progress
|
ProgressCallback | None
|
Optional callback invoked after each batch. |
None
|
Yields:
| Type | Description |
|---|---|
StreamingProgress
|
StreamingProgress dict after each batch with: |
StreamingProgress
|
|
StreamingProgress
|
|
StreamingProgress
|
|
StreamingProgress
|
|
StreamingProgress
|
|
Returns:
| Type | Description |
|---|---|
list[int]
|
List of all inserted document IDs (access via generator.send(None) |
list[int]
|
or list(generator) after exhaustion). |
Example
def load_documents(): ... for line in open("large_file.jsonl"): ... doc = json.loads(line) ... yield (doc["text"], doc.get("meta"), None) ... gen = collection.add_texts_streaming(load_documents()) for progress in gen: ... print(f"Batch {progress['batch_num']}: {progress['docs_processed']} total")
IDs accumulated in progress['ids'] for each batch
Example with callback
def log_progress(p): ... print(f"{p['docs_processed']} docs inserted") list(collection.add_texts_streaming(items, on_progress=log_progress))
Source code in src/simplevecdb/core.py
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | |
similarity_search(query, k=5, filter=None, *, exact=None, threads=0)
Search for most similar vectors using HNSW approximate nearest neighbor.
For COSINE distance, returns distance in [0, 2] (lower = more similar). For L2/L1, returns raw distance (lower = more similar).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | Sequence[float]
|
Query vector or text string (auto-embedded if string). |
required |
k
|
int
|
Number of nearest neighbors to return. |
5
|
filter
|
dict[str, Any] | None
|
Optional metadata filter. |
None
|
exact
|
bool | None
|
Force search mode. None=adaptive (brute-force for <10k vectors), True=always brute-force (perfect recall), False=always HNSW. |
None
|
threads
|
int
|
Number of threads for parallel search (0=auto). |
0
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, float]]
|
List of (Document, distance) tuples, sorted by ascending distance. |
Source code in src/simplevecdb/core.py
similarity_search_batch(queries, k=5, filter=None, *, exact=None, threads=0)
Search for similar vectors across multiple queries in parallel.
Automatically batches queries for ~10x throughput compared to sequential single-query searches. Uses usearch's native batch search optimization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
Sequence[Sequence[float]]
|
List of query vectors. |
required |
k
|
int
|
Number of nearest neighbors per query. |
5
|
filter
|
dict[str, Any] | None
|
Optional metadata filter (applied to all queries). |
None
|
exact
|
bool | None
|
Force search mode. None=adaptive, True=brute-force, False=HNSW. |
None
|
threads
|
int
|
Number of threads for parallel search (0=auto). |
0
|
Returns:
| Type | Description |
|---|---|
list[list[tuple[Document, float]]]
|
List of result lists, one per query. Each result is (Document, distance). |
Example
queries = [embedding1, embedding2, embedding3] results = collection.similarity_search_batch(queries, k=5) for query_results in results: ... print(f"Found {len(query_results)} matches")
Source code in src/simplevecdb/core.py
keyword_search(query, k=5, filter=None)
Search using BM25 keyword ranking (full-text search).
Uses SQLite's FTS5 extension for BM25-based ranking.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Text query using FTS5 syntax. |
required |
k
|
int
|
Maximum number of results to return. |
5
|
filter
|
dict[str, Any] | None
|
Optional metadata filter. |
None
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, float]]
|
List of (Document, bm25_score) tuples, sorted by descending relevance. |
Raises:
| Type | Description |
|---|---|
RuntimeError
|
If FTS5 is not available. |
Source code in src/simplevecdb/core.py
hybrid_search(query, k=5, filter=None, *, query_vector=None, vector_k=None, keyword_k=None, rrf_k=60)
Combine BM25 keyword search with vector similarity using Reciprocal Rank Fusion.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str
|
Text query for keyword search. |
required |
k
|
int
|
Final number of results after fusion. |
5
|
filter
|
dict[str, Any] | None
|
Optional metadata filter. |
None
|
query_vector
|
Sequence[float] | None
|
Optional pre-computed query embedding. |
None
|
vector_k
|
int | None
|
Number of vector search candidates. |
None
|
keyword_k
|
int | None
|
Number of keyword search candidates. |
None
|
rrf_k
|
int
|
RRF constant parameter (default: 60). |
60
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, float]]
|
List of (Document, rrf_score) tuples, sorted by descending RRF score. |
Raises:
| Type | Description |
|---|---|
RuntimeError
|
If FTS5 is not available. |
Source code in src/simplevecdb/core.py
max_marginal_relevance_search(query, k=5, fetch_k=20, lambda_mult=0.5, filter=None)
Search with diversity - return relevant but non-redundant results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query
|
str | Sequence[float]
|
Query vector or text string. |
required |
k
|
int
|
Number of diverse results to return. |
5
|
fetch_k
|
int
|
Number of candidates to consider. |
20
|
lambda_mult
|
float
|
Diversity trade-off (0=diverse, 1=relevant). |
0.5
|
filter
|
dict[str, Any] | None
|
Optional metadata filter. |
None
|
Returns:
| Type | Description |
|---|---|
list[Document]
|
List of Documents ordered by MMR selection. |
Source code in src/simplevecdb/core.py
delete_by_ids(ids)
Delete documents by their IDs.
Removes documents from both usearch index and SQLite metadata.
Does NOT auto-vacuum; call VectorDB.vacuum() separately.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ids
|
Iterable[int]
|
Document IDs to delete |
required |
Source code in src/simplevecdb/core.py
remove_texts(texts=None, filter=None)
Remove documents by text content or metadata filter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
texts
|
Sequence[str] | None
|
Optional list of exact text strings to remove |
None
|
filter
|
dict[str, Any] | None
|
Optional metadata filter dict |
None
|
Returns:
| Type | Description |
|---|---|
int
|
Number of documents deleted |
Raises:
| Type | Description |
|---|---|
ValueError
|
If neither texts nor filter provided |
Source code in src/simplevecdb/core.py
rebuild_index(*, connectivity=None, expansion_add=None, expansion_search=None)
Rebuild the usearch HNSW index from embeddings stored in SQLite.
Useful for: - Recovering from index corruption - Tuning HNSW parameters (connectivity, expansion) - Reclaiming space after many deletions
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
connectivity
|
int | None
|
HNSW M parameter (edges per node). Default: 16 |
None
|
expansion_add
|
int | None
|
efConstruction (build quality). Default: 128 |
None
|
expansion_search
|
int | None
|
ef (search quality). Default: 64 |
None
|
Returns:
| Type | Description |
|---|---|
int
|
Number of vectors rebuilt |
Raises:
| Type | Description |
|---|---|
RuntimeError
|
If no embeddings found in SQLite |
Source code in src/simplevecdb/core.py
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 | |
get_children(doc_id)
Get all direct children of a document.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
int
|
ID of the parent document |
required |
Returns:
| Type | Description |
|---|---|
list[Document]
|
List of child Documents |
Example
Add parent and children
parent_id = collection.add_texts(["Parent doc"], embeddings=[emb])[0] collection.add_texts( ... ["Child 1", "Child 2"], ... embeddings=[emb1, emb2], ... parent_ids=[parent_id, parent_id] ... ) children = collection.get_children(parent_id)
Source code in src/simplevecdb/core.py
get_parent(doc_id)
Get the parent document of a given document.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
int
|
ID of the child document |
required |
Returns:
| Type | Description |
|---|---|
Document | None
|
Parent Document, or None if no parent |
Source code in src/simplevecdb/core.py
get_descendants(doc_id, max_depth=None)
Get all descendants of a document (recursive).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
int
|
ID of the root document |
required |
max_depth
|
int | None
|
Maximum depth to traverse (None for unlimited) |
None
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, int]]
|
List of (Document, depth) tuples, ordered by depth then ID |
Source code in src/simplevecdb/core.py
get_ancestors(doc_id, max_depth=None)
Get all ancestors of a document (path to root).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
int
|
ID of the document |
required |
max_depth
|
int | None
|
Maximum depth to traverse (None for unlimited) |
None
|
Returns:
| Type | Description |
|---|---|
list[tuple[Document, int]]
|
List of (Document, depth) tuples, from immediate parent to root |
Source code in src/simplevecdb/core.py
set_parent(doc_id, parent_id)
Set or update the parent of a document.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc_id
|
int
|
ID of the document to update |
required |
parent_id
|
int | None
|
New parent ID (None to remove parent relationship) |
required |
Returns:
| Type | Description |
|---|---|
bool
|
True if document was updated, False if document not found |
Source code in src/simplevecdb/core.py
cluster(n_clusters=None, algorithm='minibatch_kmeans', *, filter=None, sample_size=None, min_cluster_size=5, random_state=None)
Cluster documents in the collection by their embeddings.
Requires scikit-learn and hdbscan (included in the standard install).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n_clusters
|
int | None
|
Number of clusters (required for kmeans/minibatch_kmeans). |
None
|
algorithm
|
ClusterAlgorithm
|
Clustering algorithm - 'kmeans', 'minibatch_kmeans', or 'hdbscan'. |
'minibatch_kmeans'
|
filter
|
dict[str, Any] | None
|
Optional metadata filter to cluster a subset of documents. |
None
|
sample_size
|
int | None
|
If set, cluster a random sample and assign rest to nearest centroid. |
None
|
min_cluster_size
|
int
|
Minimum cluster size (HDBSCAN only). |
5
|
random_state
|
int | None
|
Random seed for reproducibility. |
None
|
Returns:
| Type | Description |
|---|---|
ClusterResult
|
ClusterResult with labels, centroids, and doc_ids. |
Raises:
| Type | Description |
|---|---|
ImportError
|
If scikit-learn or hdbscan (for HDBSCAN) not installed. |
ValueError
|
If n_clusters required but not provided. |
Example
result = collection.cluster(n_clusters=5) print(result.summary()) # {0: 42, 1: 38, 2: 20, ...}
Source code in src/simplevecdb/core.py
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 | |
auto_tag(cluster_result, *, method='keywords', n_keywords=5, custom_callback=None)
Generate descriptive tags for each cluster.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cluster_result
|
ClusterResult
|
Result from cluster() method. |
required |
method
|
str
|
Tagging method - 'keywords' (TF-IDF) or 'custom'. |
'keywords'
|
n_keywords
|
int
|
Number of keywords per cluster (for 'keywords' method). |
5
|
custom_callback
|
ClusterTagCallback | None
|
Custom function (texts: list[str]) -> str for 'custom' method. |
None
|
Returns:
| Type | Description |
|---|---|
dict[int, str]
|
Dict mapping cluster_id -> tag string. |
Example
result = collection.cluster(n_clusters=3) tags = collection.auto_tag(result) print(tags) # {0: 'machine learning, neural', 1: 'database, sql', ...}
Source code in src/simplevecdb/core.py
assign_cluster_metadata(cluster_result, tags=None, *, metadata_key='cluster', tag_key='cluster_tag')
Persist cluster assignments to document metadata.
After calling this, you can filter by cluster: filter={"cluster": 2}
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cluster_result
|
ClusterResult
|
Result from cluster() method. |
required |
tags
|
dict[int, str] | None
|
Optional cluster tags from auto_tag(). If provided, also sets tag_key. |
None
|
metadata_key
|
str
|
Metadata key for cluster ID (default: "cluster"). |
'cluster'
|
tag_key
|
str
|
Metadata key for cluster tag (default: "cluster_tag"). |
'cluster_tag'
|
Returns:
| Type | Description |
|---|---|
int
|
Number of documents updated. |
Example
result = collection.cluster(n_clusters=5) tags = collection.auto_tag(result) collection.assign_cluster_metadata(result, tags)
Now filter by cluster
docs = collection.similarity_search(query, filter={"cluster": 2})
Source code in src/simplevecdb/core.py
get_cluster_members(cluster_id, *, metadata_key='cluster')
Get all documents in a cluster (requires assign_cluster_metadata first).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cluster_id
|
int
|
Cluster ID to retrieve. |
required |
metadata_key
|
str
|
Metadata key where cluster is stored (default: "cluster"). |
'cluster'
|
Returns:
| Type | Description |
|---|---|
list[Document]
|
List of Documents in the cluster. |
Source code in src/simplevecdb/core.py
save_cluster(name, cluster_result, *, metadata=None)
Save cluster state for later reuse without re-clustering.
Persists centroids and algorithm info so new documents can be assigned to existing clusters using assign_to_cluster().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Unique name for this cluster configuration. |
required |
cluster_result
|
ClusterResult
|
Result from cluster() method. |
required |
metadata
|
dict[str, Any] | None
|
Optional additional metadata (tags, metrics, etc.). |
None
|
Example
result = collection.cluster(n_clusters=5) tags = collection.auto_tag(result) collection.save_cluster("product_categories", result, metadata={"tags": tags})
Source code in src/simplevecdb/core.py
load_cluster(name)
Load a saved cluster configuration.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Name of the saved cluster configuration. |
required |
Returns:
| Type | Description |
|---|---|
tuple[ClusterResult, dict[str, Any]] | None
|
Tuple of (ClusterResult with centroids, metadata dict) or None if not found. |
Example
saved = collection.load_cluster("product_categories") if saved: ... result, meta = saved ... print(f"Loaded {result.n_clusters} clusters")
Source code in src/simplevecdb/core.py
list_clusters()
delete_cluster(name)
assign_to_cluster(name, doc_ids=None, *, metadata_key='cluster')
Assign documents to clusters using saved centroids.
Fast assignment without re-clustering - uses nearest centroid matching. Useful for assigning newly added documents to existing cluster structure.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Name of saved cluster configuration (from save_cluster). |
required |
doc_ids
|
list[int] | None
|
Document IDs to assign. If None, assigns all unassigned docs. |
None
|
metadata_key
|
str
|
Metadata key to store cluster assignment. |
'cluster'
|
Returns:
| Type | Description |
|---|---|
int
|
Number of documents assigned. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If cluster not found or has no centroids (HDBSCAN). |
Example
Add new documents
new_ids = collection.add_texts(new_texts, embeddings=new_embs)
Assign to existing clusters
collection.assign_to_cluster("product_categories", new_ids)
Source code in src/simplevecdb/core.py
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 | |
Quick Reference
Search Methods
| Method | Description | Use Case |
|---|---|---|
similarity_search() |
Vector similarity search | Single query, best match |
similarity_search_batch() |
Batch vector search | Multiple queries, ~10x throughput |
keyword_search() |
BM25 full-text search | Keyword matching |
hybrid_search() |
BM25 + vector fusion | Best of both worlds |
max_marginal_relevance_search() |
Diversity-aware search | Avoid redundant results |
Search Parameters
# Adaptive search (default) - auto-selects brute-force or HNSW
results = collection.similarity_search(query, k=10)
# Force exact brute-force search (perfect recall)
results = collection.similarity_search(query, k=10, exact=True)
# Force HNSW approximate search (faster)
results = collection.similarity_search(query, k=10, exact=False)
# Parallel search with explicit thread count
results = collection.similarity_search(query, k=10, threads=4)
# Batch search for multiple queries
results = collection.similarity_search_batch(queries, k=10)
Quantization Options
from simplevecdb import Quantization
# Full precision (default)
collection = db.collection("docs", quantization=Quantization.FLOAT)
# Half precision - 2x memory savings, 1.5x faster
collection = db.collection("docs", quantization=Quantization.FLOAT16)
# 8-bit quantization - 4x memory savings
collection = db.collection("docs", quantization=Quantization.INT8)
# 1-bit quantization - 32x memory savings
collection = db.collection("docs", quantization=Quantization.BIT)
Streaming Insert
For large-scale ingestion without memory pressure:
# From generator/iterator
def load_documents():
for line in open("large_file.jsonl"):
doc = json.loads(line)
yield (doc["text"], doc.get("metadata"), doc.get("embedding"))
for progress in collection.add_texts_streaming(load_documents()):
print(f"Batch {progress['batch_num']}: {progress['docs_processed']} total")
# With progress callback
def log_progress(p):
print(f"{p['docs_processed']} docs, batch {p['batch_num']}")
list(collection.add_texts_streaming(items, batch_size=500, on_progress=log_progress))
Hierarchical Relationships
Organize documents in parent-child hierarchies for chunked documents, threaded conversations, or nested content:
# Add documents with parent relationships
parent_ids = collection.add_texts(["Main document"], metadatas=[{"type": "parent"}])
parent_id = parent_ids[0]
# Add children referencing the parent
child_ids = collection.add_texts(
["Chunk 1", "Chunk 2", "Chunk 3"],
parent_ids=[parent_id, parent_id, parent_id]
)
# Navigate the hierarchy
children = collection.get_children(parent_id) # Direct children
parent = collection.get_parent(child_ids[0]) # Get parent document
descendants = collection.get_descendants(parent_id) # All nested children
ancestors = collection.get_ancestors(child_ids[0]) # Path to root
# Reparent or orphan documents
collection.set_parent(child_ids[0], new_parent_id) # Move to new parent
collection.set_parent(child_ids[0], None) # Make root document
# Search within a subtree
results = collection.similarity_search(
query_embedding,
k=5,
filter={"parent_id": parent_id} # Only search children
)
| Method | Description |
|---|---|
get_children(doc_id) |
Direct children of a document |
get_parent(doc_id) |
Parent document (or None if root) |
get_descendants(doc_id, max_depth) |
All nested children recursively |
get_ancestors(doc_id) |
Path from document to root |
set_parent(doc_id, parent_id) |
Move document to new parent (or None to orphan) |
Cross-Collection Search
Search across multiple collections with unified, ranked results:
from simplevecdb import VectorDB
db = VectorDB("app.db")
# Initialize collections
users = db.collection("users")
products = db.collection("products")
docs = db.collection("docs")
# Add data to each collection
users.add_texts(["Alice likes hiking"], embeddings=[[0.1]*384])
products.add_texts(["Hiking boots", "Trail map"], embeddings=[[0.2]*384, [0.15]*384])
docs.add_texts(["Mountain hiking guide"], embeddings=[[0.12]*384])
# List initialized collections
print(db.list_collections()) # ['users', 'products', 'docs']
# Search across ALL collections
results = db.search_collections([0.1]*384, k=5)
for doc, score, collection_name in results:
print(f"[{collection_name}] {doc.page_content} (score: {score:.3f})")
# Search specific collections only
results = db.search_collections(
[0.1]*384,
collections=["users", "products"], # Exclude 'docs'
k=3
)
# With metadata filtering (applies to all collections)
results = db.search_collections(
[0.1]*384,
k=10,
filter={"category": "outdoor"}
)
# Disable score normalization (returns inverted distances)
results = db.search_collections([0.1]*384, normalize_scores=False)
# Sequential search (disable parallelism)
results = db.search_collections([0.1]*384, parallel=False)
| Method | Description |
|---|---|
list_collections() |
Names of all initialized collections |
search_collections(query, collections, k, filter, normalize_scores, parallel) |
Search across multiple collections with merged results |
Clustering & Auto-Tagging
Group similar documents and generate descriptive tags:
from simplevecdb import VectorDB
db = VectorDB("app.db")
collection = db.collection("docs")
# Add documents with embeddings
collection.add_texts(texts, embeddings=embeddings)
# Cluster documents into groups
result = collection.cluster(
n_clusters=5,
algorithm="minibatch_kmeans", # or "kmeans", "hdbscan"
random_state=42
)
print(result.summary()) # {0: 42, 1: 38, 2: 15, 3: 3, 4: 2}
# Generate keyword tags for each cluster
tags = collection.auto_tag(result, n_keywords=5)
# {0: 'machine learning, neural network, deep', 1: 'database, sql, query', ...}
# Persist cluster assignments to metadata
collection.assign_cluster_metadata(result, tags)
# Query documents by cluster
ml_docs = collection.get_cluster_members(0)
db_docs = collection.similarity_search(query, filter={"cluster": 1})
# Custom tagging callback
def summarize_cluster(texts: list[str]) -> str:
return f"Group of {len(texts)} docs about {texts[0][:20]}..."
custom_tags = collection.auto_tag(result, method="custom", custom_callback=summarize_cluster)
| Method | Description |
|---|---|
cluster(n_clusters, algorithm, filter, sample_size) |
Cluster documents by embedding similarity |
auto_tag(result, method, n_keywords, custom_callback) |
Generate descriptive tags for clusters |
assign_cluster_metadata(result, tags, metadata_key) |
Persist cluster IDs to document metadata |
get_cluster_members(cluster_id, metadata_key) |
Retrieve all documents in a cluster |
save_cluster(name, result, metadata) |
Save cluster centroids for later assignment |
load_cluster(name) |
Load saved cluster configuration |
list_clusters() |
List all saved cluster configurations |
delete_cluster(name) |
Delete a saved cluster configuration |
assign_to_cluster(name, doc_ids, metadata_key) |
Assign documents to saved clusters |
Algorithms:
| Algorithm | Best For | Requires n_clusters |
|---|---|---|
minibatch_kmeans |
Large datasets (default) | Yes |
kmeans |
Small datasets, precise centroids | Yes |
hdbscan |
Unknown cluster count, density-based | No |
Clustering is included in the standard installation (no extras needed).
Cluster Metrics
Access clustering quality metrics to evaluate results:
result = collection.cluster(n_clusters=5, random_state=42)
# Inertia (K-means only): sum of squared distances to centroids
# Lower is better; indicates tighter clusters
print(f"Inertia: {result.inertia}")
# Silhouette score: measure of cluster separation (-1 to 1)
# Higher is better; >0.5 indicates good clustering
print(f"Silhouette: {result.silhouette_score}")
# Get all metrics as dict
metrics = result.metrics()
# {'inertia': 1523.45, 'silhouette_score': 0.62}
Cluster Persistence
Save cluster configurations for fast assignment of new documents:
# 1. Cluster your documents
result = collection.cluster(n_clusters=5, random_state=42)
tags = collection.auto_tag(result)
# 2. Save cluster state (centroids + metadata)
collection.save_cluster(
"product_categories",
result,
metadata={"tags": tags, "version": 1}
)
# 3. Later: assign new documents without re-clustering
new_ids = collection.add_texts(new_texts, embeddings=new_embeddings)
collection.assign_to_cluster("product_categories", new_ids)
# List saved clusters
clusters = collection.list_clusters()
# [{'name': 'product_categories', 'n_clusters': 5, 'algorithm': 'minibatch_kmeans', ...}]
# Load cluster for inspection
saved = collection.load_cluster("product_categories")
if saved:
result, meta = saved
print(f"Loaded {result.n_clusters} clusters, tags: {meta['tags']}")
# Delete when no longer needed
collection.delete_cluster("product_categories")